3-Manifolds Exercises

Sheet 1

Exercise 1.

A knot diagram Dy of a knot K is called 3-colorable if one can color each arc in exactly one
of three colors such that we use every color and at each crossing all three colors or only on color
meet.

(a) Show that 3-colorability is a property of the knot K.

(b) Deduce that the trefoil is non-trivial (i.e. not isotopic to the unknot).

(¢) Which other knots can you distinguish from each other via 3-colorability?
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Exercise 2.

Determine the isotopy type of the following knots and links.

Hint: The diagram in in the middle is called culprit. The reason is that you first have to make
the diagram more complicated (in therms of mumber of crossing) before you can simplify it. The
diagram on the lower left is called Thistlethwaite knot. For many people it turned out to be
complicated to determine its isotopy type.
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Exercise 3.

(a) Any knot admits a regular projection (i.e. prove Lemma 1.2).
Bonus: Show that a generic projection of a given knot is regular.
Hint: First, you should make the word 'generic’ precise.

(b) Two knot diagrams Dy and Dg+ represent isotopic knots K and K’ if and only if Dg can
be transformed into Dy via a finite sequence of Reidemeister moves and planar isotopies
(i.e. prove Theorem 1.3).
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Exercise 4.
The connected sum of two oriented knots K, and K5 is defined in the following picture.

(a) Show that the connected sum is well-defined. Given an example showing that this is not true

anymore if we work with unoriented knots.

(b) K;#K> is isotopic to Ko# K.

(c) For which knots K, and K3 is K;# K> isotopic to the unknot?
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Topology of 3-Manifolds

Exercise sheet 2

Exercise 1.
Compute the Jones polynomial of the figure eight knot in two ways:

(a) via the Kauffman polynomial, and
(b) by directly using the Skein relation.

Deduce that the figure eight knot is non-trivial.
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Exercise 2.

A knot K is called amphicheiral if it is isotopic to its mirror K. An oriented knot K is called

invertible if its is isotopic to itself with the reversed orientation — K.

Are the trefoil and the figure eight knot amphicheiral or invertible?
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Exercise 3.
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Exercise 4.

(a) For oriented knots K| and K, we have V(K #K5) = V(K )V(K3). Can you prove something

similar for oriented links?
(b) For the disjoint union L, Ul L, of oriented links L, and L, we have

V(L U L) (a7V2% + qY2)V(Ly)V(L,).

(¢) Construct non-isotopic links with the same Jones polynomial.

Challenge: Can you construct non-isotopic knots with the same Jones polynomial?
Hint: The idea of the construction is similar as for links. But at the moment it will be hard

to show that the constructed knots with equal Jones polynomial are really non-isotopic.
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Bonus exercise.
A Seifert surface of an oriented link L is an oriented surface embedded surface F in R* which

intersects the link exactly as its oriented boundary.

(a) Describe an algorithm to produce a Seifert surface of an oriented link from one of its diagrams.
Hint: First resolve the crossings appropriately and fill the remaining circles by disks. Then
try to glue the disks by drilled bands to obtain a Seifert surface of the original link.

(b) The genus g(L) of an oriented link is defined to be the minimal genus among all its Seifert
surfaces. How does the genus depend on the orientation of the link? Compute the genus for
the trefoil and the figure eight knot.

(c) Let K, and K> be oriented knots. Then g(K;#K>) < g(K,) + g(K>»).
Remark: In fact, equality is true. But this is harder to show.
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Seifert surfaces:
https://mathcurve.com/surfaces.gb/seifert/seifert.shtml
https://www.win.tue.nl/~vanwijk/seifertview/tutorial7.htm
https://www.youtube.com/watch?v=px3Gq gvvac
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Challenge.

A Brunnian n-link is a non-trivial n-component link consisting of n-unknots, such that removin

- £
any of its components yields a trivial (n — 1)-component link.
(a) Construct for every n € N a Brunnian n-link.
(b) Construct infinitely many different 3-component Brunnian links.

Brunnian links:
https://mathcurve.com/courbes3d.gb/brunnien/brunnien.shtml
https://en.wikipedia.org/wiki/Brunnian_link
http://katlas.org/wiki/Brunnian_link
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Sheet 3

Exercise 1.

(a) Describe an explicit Morse function of EP? inducing a handle decomposition of EP? with
exactly one (-handle, one 1-handle and one 2-handle.
(b} Sketch an embedding of the swrface o of genus 2 into EY, such that the height function is

a Morse function on X; inducing a handle decomposition of £ with exactly one (Fhandle
and exactly one 2-handle.

(] Draw sketches of all handle cancellations and handle slides in dimensions 1, 2 and 3. Indicate
in vour sketches also the attaching spheres. the belt spheres, the cores, the cocores and the

(d/ attaching regions. . L’ ,,/2107. &/_//? M ) /,~ €
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Exercise 2.

(a) Use the Alexander trick to show that any manifold obtained by gluing two n-dizks iz homeo-
morphic to the n-sphere.

(b) In the lecture we constructed Milnor's exotic T-sphere EY by gluing to copies of 5% % DY via
a diffeomorphism of their boundaries. Verify that this construetion defines a natural smooth
structure on £°.

() Describe an explicit Morse function on E7 with exactly two critical points and conclude that
E7 is homeomorphic to §7.
Hint: Consider the suitable scaled real part of the S¥-factor in the first copy of 5% % D* and
try to extend that map over the second copy of 5% % D* (where we see S again as in the
lecture as the unit sphere in the quaternions). Of course one could also look into Milnor's
original paper and just copy the formmula and compute that it is a Morse function with the
desired properties, but then yvon will not learn much from this exercise.
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Exercise 3.
We consider the 3-torus T% := 81 x 8! » 81

(a) Show that we can obtain 7% from the cube I % T % I by identifyving opposite sides.
(b} Describe a handle decompe of T4 mple as possible).

(¢} Draw a planar Heegaard diagram of T7.
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Exercise 4.

(a) Describe a way to compute the fundamental group of a manifold with a given handle de-
composition.

(b} The fundamental group of a compact smooth manifold is finitely presented. Conversely, we
can get for any n = 5 any finitely presented group as the fundamental group of a closed

oriented n-manifold.
Challenge: Can you show the same for n = 47

On the other hand, not every finitely presented group occurs as the fundamental group of a
closed orientable 3-manifold. Groups arising as the fundamental group of a closed orientable

(e

F-manifolds are called 3-manifold groups.

Hint: Let {gy....qq|r1.... 1) be a finite presentation of a group (. We call n — k the defi-
clency of this presentation. The deficiency of a finitely presented group (7 is the maximum
deficiency of a finite presentation for (7. Then you need to show that any 3-manifold group

has non-negative deficiency and find a group with negative deficiency.
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Sheet 4

Exercise 1.
Let M be a connected closed orientable 3-manifold presented by a Heegaard diagram.

(a) Conduct a presentation of the first homology group Hy(M:Z) only depending on the homo-
logical information of the Heegaard diagram.

(b) Describe a presentation of the fundamental group of M.

{e] Compute the fundamental group and homology groups of the lens spaces Lp, q) from their
Heegaard diagrams. What are the higher homotopy groups of lens spaces? /3
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Exercise 2.
Let M and N be two connected. smooth, oriented. closed n-manifolds. The connected sum
M#N iz the closed. oriented n-manifold defined as follows. Choose embeddings iy D™ — M and
iy I — N, where iy preserves the orientation and iy reverses the orientation. The connected
sum is obtained from
(M iae(00) + (N in(0))
by identifyving points iy (tp) with points iy ({1 —t)p) for pe 8" Pand 0 <t < 1.

(a) It is possible to show that this is a well-defined operation. (This uses methods from differential
topology and is not your task.) What would yon have to show for it?

(b) Let M and N be two connected, smooth, compact, oriented n-manifolds with non-empty
connected boundary. The boundary connected sum MiN is obtained from M and N

by attaching an 1-handle to the boundary of M and & such that the resulting manifold is
oriented and connected. Show that this is well-defined and that we have ) MtN) = dM#ON.

Show that the Heegaard genus iz sub-additive under connected sum. i.e. show that

e
g(M#N) < g(M) + g(N)

holds. To do this, figure ont how to get a Heegaard diagram of M # N from Heegaard diagrams
of M and N.
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Exercise 3.

(a} The Heegaard genus of T9 is 3.
Hint: Consider the first homology or the fundamental group of T4,

{(h) A bit more general, construct for any natural number g a 3-manifold with Heegaard genms g
(c) The Heegaard genus of £, x 5! is equal to 2g + 1.

Bonus: The Heegaard genus of a surface bundle of a surface X, of genus g over T equal
to 2g + 1. Where a surface bundle over §' is defined as follows. We start with a surface
Y, of genus g and a diffeomorphism ¢: X, — X, Then the surface bundle over 5! with

- =g

monodromy ¢ is defined as the quotient space X x I/ ~ where (p. 1) ~ (&(p), 0).
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Exercise 4.
Which 3-manifold is presented by the following planar Heegaard diagram?
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Exercize 1.
Let i be a knot in a connected closed oriented 3-manifold M.

(a) There exists a Heegaard splitting of M such that K lies on its Heegaard surface.

(b} Compute the homology class of K in Hj(M:Z) from a Heegaard splitting (X.; 5, ..., 4;)
of M swith K < X,.

{c] Describe non-nullhomologous knotss in planar Heegaard diagrams of the lens spaces L(p, 1)
and §' x 8%, Which homological order have these knots? Show that these knotz do not
admit Seifert surfaces.

Hemark: Later we will show, that a knot admits a Seifert surface if and only if it is nullho-
mologons.
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Exercise 2.
(a) Any orientation preserving homeomorphism of 5! is isotopic to the identity.

(b} Let ¥ be a solid torus. A homeomorphism of 3V extends to a homeomorphism of V' if and
only if the meridian g gets mapped to a curve which is isotopic to £p.

(e} A Dehn twist along a non-separating curve on 41 is not isotopic to the identity, i.e. represents
a non-trivial element in the mapping class group.
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Exercise 1.
(a) Construct two linked oriented knots with vanishing linking numbers.

(b) Let K, and K, oriented knots in S®. Let ¥, be a Seifert surface of K, see the bonus exercise

from Sheet 2. Then the linking number of K} and K3 can be computed as
k(K. K2) = K, eX

where K, e ¥, denotes the oriented count of transverse intersections of Ky and ¥,.
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Exercise 2.

(a) (—1)-surgery along the right-handed trefoil yields the same manifold as (+1)-surgery along
the figure eight.

(b) Show that all three surgery descriptions in Figure 1 represent the Poincaré homology sphere.
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Exercise 3.
(a) The lens spaces L(p,q) and L(p, g + np) are homeomorphic for every integer n € Z.
(b) If ¢¢" = 1 mod(p), then the lens spaces L(p.q) and L(p, q') are homeomorphic.
(¢) Moreover, are L(—p,q), L(p, —q) and —L(p. q) orientation preserving homeomorphic.

Remark: The relations from (a), (b) and (¢) give the complete classification of lens spaces up
to orientation preserving homeomorphisms. However, the classification of lens spaces up to
homotopy equivalence differs. Two lens spaces L(p.q) and L(p.q’) are orientation preserving
homotopy equivalent if and only if g¢’ is a square mod(p). For example L(7.1) and L(7.2)
are homotopy equivalent but not homeomorphic.

(d) (+5)-surgery along the right-handed trefoil yields yields a lens space.
(e) Describe a surgery presentation of the connected sum of any two lens spaces.

(f) (46)-surgery along the right-handed trefoil yields the connected sum of two lens spaces.
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Exercise 4.

(a) Compute the homology groups of a 3-manifold from one of its surgery presentations, i.e.

prove Lemma 5.8 from the lecture.

(b) Show that, we cannot get the 3-torus 7% by surgery along a link with less than 3 components.

Describe a surgery diagram of the 3-torus along a 3-component link.

(¢) For every natural number k € N there exists a 3-manifold that can be obtained by surgery

along k-component link but not along a link with less than & components.
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